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Abstract. Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured
meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation which
can be then artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation
and preserves conservation in a strict model sense. The method is described as applied to the discretization of the Finite volumE
Sea ice — Ocean Model (FESOM2) on triangular meshes. It however is generalizable to collocated vertex based discretization

on triangular meshes and to both triangular and hexagonal C-grid discretizations.

1 Introduction

Over recent years a considerable progress has been achieved in the development of global ocean circulation models working
on horizontally unstructured meshes such as FESOM1.4, Wang et al. (2014), MPAS-o Ringler et al. (2013), FESOM2, Danilov
et al. (2017) and ICON-o Korn (2017). By refining in dedicated areas of the world ocean these models may resolve dynamics
that would otherwise require nesting or using higher resolution globally. Since these models still use vertically aligned meshes
the overhead of horizontally unstructured mesh is minimized because the horizontal neighborhood information is valid for the
entire vertical column, and becomes negligible as the number of vertical levels is increased. These models show a very good
parallel scalability and reach throughput (in simulated years per day) comparable to that of structured-mesh models (Koldunov
et al. (2019)). However, the unstructured character of meshes makes many traditional diagnostics, such as barotropic and
meridional overturning streamfunctions, difficult. Any interpolation on a regular mesh violates the sense in which continuity
is satisfied in a model and introduces errors which, while often acceptable for computing local fluxes and transports, are very
annoying in computations of global or basin streamfunctions where large positive and negative contributions are combined
together. Furthermore, in the case of streamfunctions one is most frequently interested in variability, which might be easily
masked or biased by the inconsistencies introduced by the analysis procedure. In the early version of FESOM, based on
continuous finite elements, the situation was exacerbated by continuity being formulated in a weighted sense, without explicitly

computed fluxes (Sidorenko et al. (2009)).
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All new large-scale ocean models are based on the finite-volume method and as such have a clear definition of fluxes at
boundaries of the control cells of their meshes. However, these fluxes are defined on irregularly located faces, so instead of
using them in their original sense one is tempted to rely on interpolation to a regular mesh. Our practice shows that incurring
inconsistencies can be large, and this road should not be followed if global or basin-scale quantities are computed. It turns
out that there are efficient and easy to implement procedures that are based on exact fluxes and balances and might be used
for analyses. These procedures do not rely on interpolation, but use binning, which is sufficient in most cases except for very
coarse meshes. The intention of this note is to describe some of them. In doing so we will use the arrangement of variables
of FESOM2, however the adjustments needed for other models with different discretizations are relatively straightforward and
will be briefly mentioned. We suspect that similar procedures are already used by other groups (in particular, for the analysis
on cubed-sphere meshes of the Massachusetts Institute of Technology general circulation model see eg. Adcroft et al. (2004)),
but we feel that they need to be documented for unstructured meshes, facilitating the use of unstructured-mesh models by a
broader community.

We will discuss computations of meridional overturning streamfunction in height and density coordinates as well as compu-

tations of barotropic streamfunction.

2  Geometry of discretization

FESOM2 uses a cell-vertex discretization, placing horizontal velocities on centroids of triangles and scalar quantities at vertices
if viewed from the surface, as shown schematically in Fig. 1. These quantities are stored at midlevels. Vertical velocities are
located at vertices and full levels. We use index v to enumerate vertices, c (cells) to enumerate triangles and % to enumerate
vertical levels or midlevels (centers of layers). The velocity control volumes are mesh triangles, and scalars are associated with
median-dual control volumes formed in the horizontal plane by connecting midpoints of edges with cell centroids. On uniform
equilateral meshes they coincide with hexagons of dual mesh, but they generally differ. For the reasons discussed in Danilov
et al. (2017) the bottom topography of FESOM is given on cells, implying that velocity control volumes are triangular prisms
in 3D. However, a part of scalar control volume can be cut by bottom topography at depths, and its footprint will differ fro that
at the surface. As a consequence, there is a one-dimensional array A, of triangle areas, and a two-dimensional array Ay, of the
areas of scalar control volumes. The transport through the top face of scalar prism with indices (k,v) is wgy Ay, With wy,, the
respective vertical (or cross-level in the case of moving level surfaces) velocity. Each triangle is characterized by the list of its
vertices v(c) which is (vy,v2,v3) for ¢ = ¢ in Fig. 1.

The elementary structure used in computations of horizontal fluxes between two scalar control volumes is given by mesh
edge (labelled with index e). An edge is characterized by its two vertices (v1,v2) symbolically written as v(e), and two cells it
belongs to, (c1,c2) symbolically written as ¢(e). For boundary edges co is absent, and ¢; is the left cell to the edge direction,
which is from the edge first vertex to the second one. There are two vectors drawn from edge midpoint to centroids of edge

cells, (dec,,dec, ). Their components are expressed in local Cartesian coordinates related to respective cells. The transport
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Figure 1. Horizontal schematic of median-dual control volumes (left) and the edge-based structure (right). In FESOM2, scalar quantities and
vertical velocity are at vertices (blue circles), while the horizontal velocities are at triangle centroids (green circles). The median-dual control
volume around vertex v, is bounded by segments (gray lines) connecting the centers of neighbor triangles with midpoints of edges. Edge e
(right panel) is characterized by its vertices v(e) = (v1,v2) and cells ¢(e) = (c1,c2) with ¢1 on the left. The edge vector 1. connects vertex

v1 to vertex va. The edge cross-vectors de., and d.., connect the edge midpoint to the respective cell centers.

through the faces of scalar control volume in layer k in the direction of edge is
Fe = [_(ez X decl) *Ugey hk:cl + (ez X dec’Q) * Uke, hkCQ]T€7

where e, is a unit vertical vector, hy., and hy, are the layer thicknesses at respective velocity points and 7, is the tracer esti-
mate at edge midpoint. T, = 1 for volume transport. In MPAS-o or ICON-o codes, which are based on hexagonal and triangular
C-grid discretizations, normal velocities are located at edges and computations of transports are simpler. The arrangement of
hexagonal C-grid is easily obtained from the case considered here if edges of dual triangular mesh are considered (with the
difference that centroids are replaced by circumcenters and line connecting c¢; with cq are perpendicular to edge e. Importantly,
edge-related transports are the same as in model, however a care should be taken that T, is computed in the same way as in the

model if property fluxes are analysed.

3 Meridional overturning

There are two convenient ways of computing meridional overturning in geopotential coordinates on unstructured meshes. The

first one involves vertical velocities. It is more straightforward and, as we guess, generally known. The second one is based
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on horizontal velocities. It is slightly more complicated, but allows generalization to isopycnal coordinates. The meridional

overturning streamfunction ¥(z,6) is defined as

0 Te
U(z,0) :/REdG/wdx,
05 T
or ..
U(z,0) = /dz/vdx.
“H e

In this definitions v is the meridional velocity component, H the ocean bottom depth, z,, and x. the western and eastern
boundaries in zonal direction, § and 6, are the latitude and the southern latitude, and Rg Earth’s radius. These definitions are

equivalent because full velocity vector is divergence-free.
3.1 Method A

In FESOM2, the vertical velocity is conservatively remapped from vertices to cells using

Whe = Z Wko /3, k# N, wn..=0,
vew(c)
where v(c) is the list of vertices of triangle ¢ and NV, is the number of the bottom level on triangle c. Indeed, it is easy to prove
that Y~ Ap,wiy =Y. Agcwr for FESOM?2 discretization, so that the vertical (across level surface) transport is preserved.
Using triangles is more convenient in FESOM?2 because bottom depth is constant on triangles. This remapping is not required
in I[CON-o0 and MPAS-o where the bottom depth is specified at scalar locations.
We introduce a set of latitude bins (60;,6;11), 6; =6y +iA0, i =0,..., Ny covering the ocean domain. The procedure of

computations is straightforward and is illustrated schematically in Fig. 2.

— For each bin i find the list of triangles c¢(¢) with centroids in these bins. They will be partly masked by bottom topography
in deep layers, and we will formally write this list as ¢(ki), adding a layer index k. Subsequent computations are over

triangles and levels, so that only c(k?) is needed.

— Compute AWy; as
AU = Y wieAe,

CECL;

where cy; is the list of triangles the centers of which are in bin 7 at level k.

— Compute the meridional overturning streamfunction

Uk =Y AT
J=1
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Figure 2. Schematics of binning. Circles correspond to triangle centroids. Bins (here B1, B2 and B3) are given by selected latitude lines. A

triangle is in a bin if its centroid is in this bin. Triangles with centroids in dark blue, light blue and green fit in bins B1, B2 and B3 respectively.

The procedure as written is strictly applicable in the case when level surfaces are fixed except for the surface. For z* vertical
coordinates or for other options where where level surfaces are changing only slightly around their mean positions it can still
be used in most cases. It can be readily augmented with vertical remap to fixed levels by considering that the difference in
transports (Wxe — Wk1)c)Ac is linearly distributed within the layer in case when layers do not disappear, and level surfaces
do not outcrop and stay at fixed depths where they cross topography. The method B should be used in more general case.

Generally A6 should be taken about or larger than the typical size of triangles. The triangles that are counted as belonging
to a bin are not necessarily confined to this bin, and the total area occupied by them differs from the bin area. However,
there generally are sufficiently many triangles in each bin, and one gets a smooth Wy, ; despite these effects. The procedure
can be improved by conservative remapping into bins, which might be needed on coarse meshes. One may always check the
bin attribution effect by repeating computations with smaller Af. We also note that for instantaneous vertical velocities the
procedure may result in ¥ different from zero at the surface. It will become zero only upon sufficient averaging which removes
transient behavior of the surface.

The computations presented here can be generalized to some other sets of binning. Any sufficiently smooth scalar quantity
defined at vertices or triangles can be used to introduce a set of bins. For example, being limited to the NA subpolar gyre, one
may ask where the AMOC is forming using bins in mean sea surface height or barotropic streamfunction (see, e.g., Katsman
et al. (2018)).

In the following we present an example showing differences between computations using different bins in Af. For this,

FESOM was configured on a mesh with resolution varying from nominal one degree in the interior of the ocean to ~1/3 degree
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in the equatorial belt and ~24 km north of 50°N. We run the model for one year starting from climatology and compute the MOC
from the annually averaged velocity. Because of starting the model at rest and short period of averaging we expect 9n/dt # 0,
where ) is the sea surface height. This, however, shall not affect the presented results. Fig. 3 depicts the simulated global MOC
which is expressed by the basinwide mid-depth cell of ~20Sv at 40°N and the bottom cell, induced by the circulation of the
5 Antarctic Bottom water with a maximum of 10Sv. Bins with Af = 0.125 °, which are finer than the nominal resolution, have
been used for computing the streamfunction. Differences between computations using different bins in A are shown in Fig. 4.
Using the the coarsest bin size of 4 ° the difference in MOC reaches locally above 5 Sv. As one would expect, decreasing the
size of bins leads to convergence towards the solution obtained with the finest bin size of A§ = 0.125 °. We see that using bins

of Af = 0.25 ° is already sufficient in this case because the mesh contains only few triangles that are smaller than the bin size.
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Figure 3. Global Meridional Overturning Circulation (MOC) streamfunctions including the eddy induced transports. The streamfunctions

depicts a canonical pattern as known from the literature with a maximum of 20Sv at 45°N.

10 3.2 Method B
Here the horizontal velocities are used. We select a set of latitudes ;. The steps of the procedure are as follows.

— For each ¢ draw a line § = 6; and find a set of edges crossed by this line, as shown schematically in Fig. 6. For this,
cycle through all edges, picking up those that satisfy the condition (6,,, —6;) (6., —0;) < 0), with §,, and ,, the latitude

of edge vertices. To avoid situations when the line passes exactly through the mesh vertex, a random noise of small
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amplitude is added to the original 6; before edge e with vertices (v1,v2) is tested. Schematic in Fig. 6 shows that the
actual line through which transport is computed is a broken line composed of vectors (d,., ,dc., ) related to the crossed
edges. For a triangular C grid discretization one will deal with transports directly through the edges. On hexagonal C
grids the procedure needs to deal with edges of dual triangular mesh. We denote the list of edges intersected by the line

0 =10; as e(i).

— The flux associated to the edge is given by the expression for F, above. The question now is the orientation of edges.
This question is trivially solved for each e by taking F if 6,,, —0; > 0 and — F, otherwise. It corresponds to keeping the
normals to segments oriented so that transports are from the "northern" side of the broken curve. On triangular C grid
the edge normal vectors used to introduce edge velocities can be selected as turned 90° in positive direction from the

edge direction. This will allow to solve the orientation problem in the same way.

— Since each of segments (d.., ,d..,) belongs to a particular cell, vertical integration is trivial for fixed level surfaces. If
level surfaces are moving, the fluxes (transports) through the faces associated with segments are conservatively interpo-
lated to the desired system of levels assuming linear distribution within model layers. In particular, the new system of
levels can be specified in terms of potential density, with the result being the streamfunction in density coordinates. For

each level the contributions from edges e € e(i) are summed to get streamfunction at this level and the latitude 6;.

Note that the list of intersected edges may be ordered arbitrarily, the computation relies on the orientation of edges with
respect to lines @ = 6. This is the reason why the search for intersected edges remains relatively fast even on very large meshes.
Furthermore, it needs to be done only once for a particular mesh. Similarly to Method A, computations can be generalized to
any set of lines, in particular to isolines of mean sea surface height or barotropic streamfunction. In both Methods we introduce
masks if computations need to be confined to a particular basin.

Using this method we computed the streamfunction using the discrete spacing of Af = 0.125 °. The difference to the stream-
function computed by method A is illustrated in Fig. 7. The discrepancy between both methods is caused by the difference of
attribution of ocean volume to 6;. This, as shown in Fig. 7, can lead to a differences exceeding locally 1 Sv. These differences
are not the errors, but uncertainty in the interpretation (see further).

As has been mentioned above the advantage of method B is the possibility of computing the MOC for a new system of vertical
levels. Figure 5 depicts the MOC computed using o2 (density referenced to 2000m) coordinate in vertical. For computing the
streamfunction in density coordinate we used 1000 equally spaced oo levels varying from 1027.5 to 1037.5 kg/m3. The
resulting MOC resembles that of generally known pattern from literature with less expressed Deacon cell as if z coordinate is
used. The result is sensitive to the selection of density bins, as illustrated in the bottom panel of Fig. 5 where the difference
is presented with computations relying on the density levels of Megann (2018). He used 72 unequally spaced density classes
spanning the range 30.0 < 03 < 37.2 kg/m? and using the logarithmic scale for densities higher than o5 > 35.0 kg/m? to
better represent the deep and bottom waters. Thus, due to the different sampling the difference in the equatorial overturning
of the surface waters reaches ~3Sv for 30 < o5 < 35.0 kg/m? and is even larger for the circulation cell associated with the

Antarctic Bottom Water. We conclude that different or not detailed enough selection of density levels may result in the small-
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scale recirculations in diagnostic of the MOC. However, this difference is not an error but attribution uncertainty created by

arbitrariness in the selection of density levels.

4 Barotropic streamfunction

As follows from the equation for elevation, time mean vertically integrated horizontal velocity U is divergence free, V | i yudz =

VU =0, i.e. it can be written in terms of the barotropic streamfunction W as
U=-Vx(Ve,).
This streamfunction gives vertically integrated transport between two points at the surface.

4.1 Computations through binning

The barotropic streamfunction is more difficult to compute because binning has to be done in two directions. We introduce
first a set of lines ¢ = ¢;, where ¢ is the longitude, and ¢; is the set of equally spaced longitude values over the basin of
interest. As a first step the set of broken lines associated to each straight line ¢ = ¢; is found. As the next step vertically
integrated transports associated with the segments of broken line are computed. The final step is further binning of edges and
associated transports into equally spaced latitude intervals (6;,0;1). Transport (and hence streamfunction) at each bin can be
then computed by summing contributions going from the southern boundary where V is set to zero.

This procedure can potentially be more noisy than computations of MOC, and may benefit from a conservative remap of the
contributions from the segments in the second binning step (the number of segments in final bins is not necessarily large, in
contrast to computations of meridional overturning).

According to the above procedure we computed the barotropic streamfunction using A6, A¢ = 0.25°. Considering, that the
procedure requires two-fold loop for (Af;, A¢;) in case of large meshes and small bins it can become computationally heavy.
The result is illustrated in Fig. 8 (upper panel) and depicts reasonable structure of the main gyres with transports of 160 Sv and
70 Sv across Antarctic Circumpolar Current (ACC) and Gulf Stream, respectively.

In Fig. 8, middle and bottom panels show the differences between the streamfunctions if bins of 2° and 1°, respectively, are
used. As expected, the largest differences occur along the main gradients and reach of above 5 Sv along the ACC front. As in
case with the MOC we note that these differences are not the errors, but uncertainty created by arbitrariness in the selection of

bin size.
4.2 Computations through velocity curl

FESOM?2 as its predecessor use implicit time stepping for the internal mode. The already available solver and routines need to
be only slightly adjusted to compute the barotropic streamfunction ¥ in the case when no-slip boundary conditions are applied.

Taking curl of the equation defining ¥ one gets

AT =(, (=e, VxU.
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In FESOM the discrete ( is located at scalar points (at vertices), so modifications of the sea surface height solver to solve the
above equations are indeed elementary. The difficulty in formal application of this approach is that the equation above needs
to be solved in a multiply connected domain with the Dirichlet boundary conditions provided on the periphery of each island
and continent. Although these conditions can be formally provided by drawing lines connecting the islands and computing
transports through the associated broken lines, this is tedious enough, especially when mesh resolution is high (and there are
many islands). In the case of no-slip boundary conditions circulations along each island are identically zeros, and the equation
above can be formally solved with the Dirichlet boundary condition on the southern boundary and the von Neumann boundary
condition O /On = 0 (n is the normal to the boundary). Although this condition does not ensure that ¥ = const over the
periphery of any island, our experience with FESOM1.4 is that it works fine enough for practical purposes.

If we integrate the equation above over a scalar control volume (in FESOM?2 scalar points are natural locations for relative

vorticity ¢ and streamfunction), we get

D [(ex xdee,) - Ve, + (€2 X deg,) - Ve, | = [dec, * Uer = dee, - Uea].
e=c(v) e=c(v)
The contributions from edges on boundaries here are one-sided, including only segments that are wet (the first in the list in the
case of FESOM). This automatically takes into account that there are no contributions from the boundary, as is the case for the
no-slip boundary conditions. The operator on the left hand side in the case of FESOM is, up to the absence of depth weighting,
the same as the part of operator used to compute the elevation, so the implementations is straightforward in the code (less so for
post-processing). A clear drawback of this procedure is that it is not applicable for partial slip boundary conditions (it can be
generalized, but will become too complicated). Since the methods based on bins was found to perform reliably, the curl-based

method presents largely a historical interest.

5 Technical realization

The FESOM 2.0 source code is available at https://github.com/FESOM/fesom?2 . It is written in Fortran 90 with some C/C++
code for providing bindings to some of the third party libraries. The code employs the distributed memory parallelization
based on MPI to run on HPC systems. The presented diagnostics have been computed using python routines that are part of
the FESOM 2.0 code distribution. For computing the MOC in z coordinate python routines require velocities to be stored as
(u,v)k,c where k and c denote the layer and element indices. This is the default output provided by FESOM. For computing
the barotropic streamfunction and MOC in density space the index k refers to a density bin and (u,v)y . denotes the transport
through this bin below the element c. Transports within the density classes are instantaneously computed by FESOM and
stored with the desired frequency if option Idiag_dMOC is activated. For the sake of better subsampling, the number of
density classes for computing transports shall be sufficiently large. This, however, can make the remapping of transports onto

density bins computationally heavy. For this reason ldiag_d M OC is switched off per default.
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6 Discussion

The general idea of simple procedures described above is the use of transports as they are defined in an unstructured-mesh
model, avoiding interpolation from an unstructured to a structured mesh. The diagnosed quantities such as meridional and
barotropic streamfunctions rely on the continuity equation, which is satisfied by the model only in a certain discrete sense.
Interpolation destroys this sense, requiring corrections and introducing interpretation errors related to these corrections. In
practice the interpretation errors are significant, being on the level of Sverdrups for the meridional overturning as illustrated in
Sidorenko et al. (2009), hampering discussions of MOC variability.

The algorithms above rely only on transports as they defined in models, and use conservative interpolation only in the vertical
direction if required by a specified system of levels.

We emphasize that algorithms described above still contain interpretation uncertainty, for in each case there is some sen-
sitivity to how bins or vertical levels are selected. In Method B the straight line # = 6; can be considered as centered in the
respective bin, however the broken line drawn around the straight line is not necessarily centered within a bin. Drawing other
possible broken lines in the bin is generally possible and can be proposed to estimate this uncertainty. However, we would
argue that such uncertainty is intrinsic in the notions we are willing to diagnose: they must rely on transport strictly consistent
with model discretization to avoid errors, and such transports are defined at irregular locations that generally do not lie on lines
of latitude or longitude. A set of bins proposes some interpretation of integrated transports that is free of horizontal interpola-
tion. Any attempt to interpolate may create new uncertainties instead of making the analysis more accurate. These ’attribution’
uncertainties have to be kept in mind especially in situations where small variability of MOC is the subject of analysis. Our
experience thus far with the methods described above is that the computed patterns of MOC and barotropic streamfunction are

sufficiently smooth.

7 Conclusions

We describe a set of simple procedures intended to diagnose the meridional overturning and barotropic streamfunctions in-
tended for unstructured meshes and requiring no interpolation of model output to regular meshes. We give application examples
and discuss uncertainties involved. The procedures are described for FESOM2, but their adaptation for other discretizations
(MPAS or ICON) is straightforward. Our experience with using them indicates that they create much less difficulties with

interpretation of model results than all our previous approaches based on interpolation.

Code availability. The code of the FESOM 2.0 model which was used to conduct the simulations for this paper is available at Zenodo

(Sidorenko et al., 2020). The latest version of FESOM2 code can be downloaded from the public GitHub repository at https://github.com/FESOM/fesom?2

under the GNU General Public License (GPLv2.0).
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Figure 4. Differences in MOC computed with bins Af = 4°, 2°,1°, 0.5°, 0.25° (from top to the bottom) relative the MOC computed with

A6 =0.125°. Evidently there is a convergence with decreasing bin size.
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Figure 5. upper panel shows the MOC computed using 1000 equally spaced density levels varying from 1027.5 to 1037.5 kg/m®. Lower
panel shows the difference in MOC if 72 unequally spaced vertical levels after Megann et al. 2010 are used.
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Figure 6. Schematics of edge search method. The gray line L intersects edges depicted with arrows that show their orientation. The set of
segments drawn to centroids from the centers of intersected edges forms a broken line connecting land at left to land at right where exact
expressions for fluxes are available in FESOM2. The broken line formed by the intersected edges will be taken on triangular C grids, and
on hexagonal C grids it will be composed of edges of primary hexagonal mesh. The set of intersected edges may stay disordered, only edge
orientation with respect to the line L should be known. The latter is positive if the latitude of the first edge point is larger than that of L and

negative otherwise. The transport through L is the transport through the associated broken line.
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Figure 7. Differences between computations of MOC using meridional or vertical velocities. The discrepancy between techniques may result

in differences of more than 1 Sv.
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Figure 8. Uppper panel: the barotropic streamfunction computed using A8, A¢ = 0.25°. Middle and bottom panels show the differences in

cases Af = 1° and 2°, respectively.
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